Lecture 1— Primitive Roots and Quadratic Reciprocity

A. Anas Chentouf, M. Wacyl Meddour, M.A.O. Scribe:

1 Primitive Roots

We have proven that the order of x modulo n is a divisor of $\phi(n)$. One may wonder what the extreme cases are. The first occurs when $\operatorname{ord}_n(x) = 1$, and this implies $x \equiv 1 \mod n$, which is not that interesting. The other extreme case occurs when $\operatorname{ord}_n(x) = \varphi(n)$, and is much more interesting.

Definition 1.1: Primitive Roots

If $\operatorname{ord}_n(g) = \varphi(n)$, then g (and its residue class) are said to be *primitive roots* modulo n.

Naturally, there are some questions to ask here.

- 1. For which moduli are there primitive roots?
- 2. How many primitive roots are there?

1.1 Existence of Primitive Roots

We answer the first question, but without providing an entire proof.

Theorem 1.2: Existence of Primitive Roots

A primitive root exists modulo n if and only if $n = 2, 4, p^k$ or $2p^k$ where p is an odd prime and $k \ge 1$.

Now we'll discuss the reason why primitive roots don't exist for positive integers not in the form described above.

Lemma 1.3: Stronger version of Euler's theorem

Let $n = p_1^{a_1} p_2^{a_2} \cdots p_m^{a_m}$ denote the prime factorization of n and let

$$M = \operatorname{lcm}(\varphi(p_1^{a_1}), \varphi(p_2^{a_2}), \cdots, \varphi(p_m^{a_m}))$$

Then $x^M \equiv 1 \mod n$ whenever gcd(x, n) = 1

Proof.

,

It's clear that $M|\varphi(p_1^{a_1})\varphi(p_2^{a_2})\cdots\varphi(p_m^{a_m})=\varphi(n)$ So in order for a primitive root to exist mod *n*, it must be the case that $M=\varphi(n)$, for otherwise all integers *x* with gcd(x,n)=1 would have orders less than $\varphi(n)$. But for the equation $M=\varphi(n)$ or

$$\operatorname{lcm}(\varphi(p_1^{a_1}),\varphi(p_2^{a_2}),\cdots,\varphi(p_m^{a_m}))=\varphi(p_1^{a_1})\varphi(p_2^{a_2})\cdots\varphi(p_m^{a_m})$$

to hold, the numbers $\varphi(p_j^{a_j})$ must be pairwise co-prime! (To see this, look at the *p*-adic valuation of both sides for each prime *q*). However $\varphi(k)$ is even for all k > 2, thus the equality above can only be true in very specific cases.

To see this more concretely, Let's look at the following example:

1.2 Number of Primitive Roots

We now answer the second question, this time with proof!

Proposition 1.4: Primitive Roots are Generators

If g is a primitive root modulo n, then $\{g^0, g^1, \dots, g^{\phi(n)-1}\}$ is the complete set of invertible residues modulo n.

Proof. There are $\varphi(n)$ invertible residues, and so it suffices to prove that the elements in the set $\{g^0, g^1, \dots, g^{\phi(n)-1}\}$ are pairwise distinct modulo n. In fact, assume that $g^i \equiv g^j \mod n$, for some $i \geq j$. then $g^{i-j} \equiv 1 \mod n$, but note that $i - j < \varphi(n)$, and so i - j = 0 by the definition of primitive roots.

Theorem 1.5: Number of Primitive Roots

If there exists a primitive root modulo n, then there are exactly $\varphi(\varphi(n))$ of them.

Proof. Consider a primitive root g. Note that by Proposition 1.4, the set $\{g^i\}_{i=0}^{\varphi(n)-1}$ contains all invertible residues, and hence all primitive roots. Note that g^i is a primitive root if and only if the smallest positive k such that $g^i k \equiv 1 \mod n$ is $k = \phi(n)$. Alternatively, the smallest k such that $ik \equiv 0 \mod \varphi(n)$ is $\varphi(n)$. In other words, i must be coprime to $\varphi(n)$, and there are exactly $\varphi(\varphi(n))$ such residues. \Box

In fact, we just proved the following result.

Lemma 1.6

If g is a primitive root modulo n, then g^i is a primitive root modulo n if and only if i is coprime to $\varphi(n)$.

In general, if there is a primitive root mod n and d is a divisor of $\varphi(n)$, then there are exactly $\varphi(d)$ elements of order equal to d.

1.3 Applications of Primitive Roots

We first apply the concept of primitive roots to prove two beautiful results.

Theorem 1.7

Let p be a prime number. Then

$$\sum_{m=1}^{p-1} m^k \pmod{p} = \begin{cases} p-1 & \text{ if } p-1 | k, \\ 0 & \text{ if } p-1 \nmid k \end{cases}$$

Proof. If p - 1|k, then by Fermat's Little Theorem,

$$\sum_{m=1}^{p-1} m^k \equiv \sum_{m=1}^p 1 \equiv p-1 \pmod{p}.$$

Otherwise, let g be a primitive root modulo p. Note that the sum ranges over the invertible residues modulo p, which are exactly generated by g^i as i ranges from 1 to p - 1, and so

$$\sum_{m=1}^{p-1} m^k = \sum_{i=1}^{p-1} g^{ik} = g^k \sum_{i=0}^{p-2} g^{ik}.$$

We can evaluate this as a geometric sum to be

$$g^k \frac{g^{k(p-1)} - 1}{g^k - 1},$$

noting that $g^k - 1$ is nonzero modulo p since $p - 1 \nmid k$. The numerator however is equal to 0, and this concludes the proof.

Another application of quadratic residues allows us to segway into our next topic: quadratic residues.

Theorem 1.8: Fermat's Christmas Theorem

Let p be an odd prime. Then there exists x such that $x^2 \equiv -1 \mod p$ if and only if $p \equiv 1 \mod 4$.

Proof. We first prove that $p \equiv 1 \mod 4$ is a necessary condition. Assume that $x^2 \equiv -1 \mod 4$. Then $x^{p-1} \equiv (x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \mod 4$. By Fermat's Little Theorem, $\frac{p-1}{2}$ must be even and so $p \equiv 1 \mod 4$.

To prove it is sufficient, consider a primitive root $g \mod p$. Since $p \equiv 1 \mod 4$, we can consider $x = g^{\frac{p-1}{4}}$. This element satisfies $x^2 \equiv g^{\frac{p-1}{2}} \pmod{p}$. Note that $x^4 \equiv 1 \pmod{p}$ by Fermat, and so $(x^2 - 1)(x^2 + 1) \equiv 0 \pmod{p}$. However, since g is a primitive root, it has order exactly p - 1 and so $x^2 \equiv g^{\frac{p-1}{2}} \not\equiv 1 \pmod{p}$, and so $x^2 \equiv -1 \pmod{p}$, as desired.

2 Quadratic Reciprocity

The previous result can be expressed in terms of the language of quadratic residues.

Definition 2.1: Quadratic Residues

Let p be an odd prime number, and a an integer such that $p \nmid a$. We say that a is a quadratic residue modulo p if there exists x such that $x^2 \equiv a \mod p$. Otherwise, we say that a is a quadratic nonresidue.

We see that $\{1^2, 2^2, \cdots, (p-1)^2\}$ are all the quadratic residues mod p but since $x^2 \equiv (p-x)^2 \mod p$, we can consider only the first half

$$\{1^2, 2^2, \cdots, \frac{(p-1)^2}{2}\}.$$

To show that these elements are distinct , suppose that $i^2 \equiv j^2 \mod p$ where $1 \leq i, j \leq \frac{p-1}{2}$ and $i \not\equiv j \mod p$, then p|(i-j)(i+j).

Since $i \not\equiv j \mod p$, then p|i+j but i+j < p/2 + p/2 = p which is impossible.

Therefore we can conclude that :

Lemma 2.2: Number of Quadratic Residues

For any odd prime p, there are exactly $\frac{p-1}{2}$ quadratic residues. Furthermore they are equal to the set:

$$\{1^2, 2^2, \cdots, \frac{p-1}{2}^2\}$$

This also tells us that there are $\frac{p-1}{2}$ quadratic nonresidues.

Now we'll look at quadratic residues by using primitive roots.

Lemma 2.3: Writing quadratic residues using primitive roots

Let g denote a primitive root modp then the set of all quadratic residues modp is equal to

$$\{g^k : k \text{ is even}\} = \{g^2, g^4 \cdots, g^{p-1}\}$$

And the set of quadratic nonresidues is equal to:

$$\{g^k : k \text{ is odd}\} = \{g^1, g^3 \cdots, g^{p-2}\}$$

Proof. Any quadratic residue a is the square of some element x in $\{1, 2, \dots, p-1\}$ but we also know that there exists some number k such that $x \equiv g^k \mod p$ which implies that $a \equiv g^{2k} \equiv g^{\text{even number}} \mod p$. This implies that the rest of the elements $\{g^k : k \text{ is odd}\}$ must be the set of all quadratic nonresidues.

Now let's express the result of Theorem 1.8 in terms of the language of quadratic residues.

Theorem 2.4: Fermat's Christmas Theorem, v2.0

Let p be a prime number. Then -1 is a quadratic residue modulo p if and only if $p \not\equiv 3 \mod 4$.

Proposition 2.5: Euler's Criterion

Let p be a prime number and a an integer. Then

 $a^{\frac{p-1}{2}} \equiv \begin{cases} 1 \pmod{p} & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 \pmod{p} & \text{if } a \text{ is a quadratic residue modulo } p, \\ 0 & \text{if } p | a. \end{cases}$

Proof. First of all let's calculate $x = g^{\frac{p-1}{2}}$ for a primitive root g. Since $x^2 \equiv g^{p-1} \equiv 1 \mod p$. This tells us that $x \equiv \pm 1 \mod p$. However it can't be possible that $g^{\frac{p-1}{2}} \equiv 1 \mod p$ since g is a primitive root, so we must have $g^{\frac{p-1}{2}} \equiv -1 \mod p$. Now a be an arbitrary element of $\{1, 2, \dots, p-1\}$. Write $a \equiv g^m \mod p$ for some integer m. Then $a^{\frac{p-1}{2}} \equiv g^{m\frac{p-1}{2}} \equiv (-1)^m$ which by Lemma 2.3 is equal to 1 if a is

a quadratic residue (i.e. m even) and -1 if a is a quadratic nonresidue (when m is odd). The case p|a is trivial.

Definition 2.6: Legendre Symbol

The Legendre symbol $\left(\frac{a}{p}\right)$ is defined as $\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic residue modulo } p. \end{cases}$

The following result follows directly from Proposition 2.5.

Proposition 2.7: Legendre Symbol is Multiplicative

For all integers a and b coprime to p, we have that

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right).$$

This tells us 3 three things: The product of two quadratic residues is a quadratic residue $(1 \times 1 = 1)$, the product of two quadratic nonresidues is a quadratic residue $(-1 \times -1 = 1)$, and the product of a quadratic residue and quadratic nonresidue is a quadratic nonresidue $(1 \times -1 = -1)$.

Notice that if we write each element as a power of primitive root g. Then this result is really just telling us the very familiar laws of parity (even+even=even, odd+odd=even, odd+even=odd)

Now we'll get to the main theorem concerning quadratic residues .

Theorem 2.8: The Law of Quadratic Reciprocity

Let p, q denote distinct odd primes, then:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \times \frac{q-1}{2}}$$

This can be equivalently stated as :

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if at least one of } p \text{ or } q \text{ is } 1 \mod 4, \\ -\left(\frac{q}{p}\right) & \text{if both } p \text{ and } q \text{ are } 3 \mod 4 \end{cases}$$

This theorem allows us to calculate $\left(\frac{p}{q}\right)$ directly from $\left(\frac{q}{p}\right)$

Theorem 2.9: Criterion for 2 and -1

 $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$ $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$

and

Theorem 2.8 and 2.9 allow us to compute Legendre symbol for all integers in an efficient manner.

Example.

We'll determine whether 21 is a quadratic residue mod 61 We see that:

$$\left(\frac{21}{61}\right) = \left(\frac{3}{61}\right)\left(\frac{7}{61}\right) = \left(\frac{61}{3}\right)\left(\frac{61}{7}\right) = \left(\frac{1}{3}\right)\left(\frac{5}{7}\right) = 1 \cdot \left(\frac{7}{5}\right) = \left(\frac{2}{5}\right) = (-1)^{\frac{5^2 - 1}{8}} = -1$$

Now let's ask the same question for $51 \mod 103$

$$\left(\frac{51}{103}\right) = \left(\frac{3}{103}\right)\left(\frac{17}{103}\right) = -\left(\frac{103}{3}\right)\left(\frac{103}{17}\right) = -\left(\frac{1}{3}\right)\left(\frac{1}{17}\right) = -1$$

Example.

Let's find all odd primes p such that the equation $x^2 \equiv 3 \mod p$ has a solution.

This condition tells us that

$$1 = \left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) \cdot \left(-1\right)^{\frac{p-1}{2}}$$

So we have 2 cases to consider: Case 1:

$$\left(\frac{p}{3}\right) = 1$$
 and $(-1)^{\frac{p-1}{2}} = 1$

The first equation implies that $p \equiv 1 \mod 3$ (because 1 is the only quadratic residue mod3) and the second says that $p \equiv 1 \mod 4$. Combining these 2 equations gives $p \equiv 1 \mod 12$

Case 2:

$$\left(\frac{p}{3}\right) = -1$$
 and $(-1)^{\frac{p-1}{2}} = -1$

The first equation implies that $p \equiv 2 \mod 3$ (Since 2 is the only quadratic nonresidue mod3) and the second says that $p \equiv 3 \mod 4$. Combining these 2 equations gives $p \equiv 11 \mod 12$

So we can conclude that the only primes p for which 3 is a quadratic residue are exactly those that leave a remainder of 1 or 11 when divided by 12.